Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(6): 3262-3277, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38296822

RESUMO

The SARS-CoV-2 RNA virus and variants, responsible for the COVID-19 pandemic has become endemic, raised a need for further understanding of the viral genome and biology. Despite vast research on SARS-CoV-2, no ribozymes have been found in the virus genome. Here we report the identification of 39 Hammerhead-variant ribozyme sequences (CoV-HHRz) in SARS-CoV-2. These sequences are highly conserved within SARS-CoV-2 variants but show large diversity among other coronaviruses. In vitro CoV-HHRz sequences possess the characteristics of typical ribozymes; cleavage is pH and ion dependent, although their activity is relatively low and Mn2+ is required for cleavage. The cleavage sites of four CoV-HHRz coincide with the breakpoint of expressed subgenomic RNA (sgRNAs) in SARS-CoV-2 transcriptome data suggesting in vivo activity. The CoV-HHRz are involved in processing sgRNAs for ORF7b, ORF 10 and ORF1ab nsp13 which are essential for viral packaging and life cycle.


Assuntos
COVID-19 , RNA Catalítico , Humanos , RNA Catalítico/genética , RNA Viral/genética , SARS-CoV-2/genética , Pandemias , RNA Subgenômico
2.
BMC Genomics ; 24(1): 120, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36927548

RESUMO

BACKGROUND: The aminoglycosides are established antibiotics that inhibit bacterial protein synthesis by binding to ribosomal RNA. Additional non-antibiotic aminoglycoside cellular functions have also been identified through aminoglycoside interactions with cellular RNAs. The full extent, however, of genome-wide aminoglycoside RNA interactions in Escherichia coli has not been determined. Here, we report genome-wide identification and verification of the aminoglycoside Kanamycin B binding to Escherichia coli RNAs. Immobilized Kanamycin B beads in pull-down assays were used for transcriptome-profiling analysis (RNA-seq). RESULTS: Over two hundred Kanamycin B binding RNAs were identified. Functional classification analysis of the RNA sequence related genes revealed a wide range of cellular functions. Small RNA fragments (ncRNA, tRNA and rRNA) or small mRNA was used to verify the binding with Kanamycin B in vitro. Kanamycin B and ibsC mRNA was analysed by chemical probing. CONCLUSIONS: The results will provide biochemical evidence and understanding of potential extra-antibiotic cellular functions of aminoglycosides in Escherichia coli.


Assuntos
Escherichia coli , RNA , RNA/química , Escherichia coli/genética , Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Aminoglicosídeos/química , Aminoglicosídeos/metabolismo , Aminoglicosídeos/farmacologia , RNA Ribossômico/química , RNA Mensageiro/genética
3.
Front Microbiol ; 13: 937827, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36523829

RESUMO

Aminoglycosides are not only antibiotics but also have wider and diverse non-antibiotic cellular functions. To elucidate the understanding of non-antibiotic cellular functions, here we report transcriptome-profiling analysis of Escherichia coli in the absence or presence of 0.5 and 1 µM of Kanamycin B, concentrations that are neither lethal nor inhibit growth, and identified the differentially expressed genes (DEGs) at two given concentrations of Kanamycin B. Functional classification of the DEGs revealed that they were mainly related to microbial metabolism including two-component systems, biofilm formation, oxidative phosphorylation and nitrogen metabolism in diverse environments. We further showed that Kanamycin B and other aminoglycosides can induce reporter gene expression through the 5' UTR of napF gene or narK gene (both identified as DEG) and Kanamycin B can directly bind to the RNA. The results provide new insights into a better understanding of the wider aminoglycosides cellular function in E. coli rather than its known antibiotics function.

4.
Nucleic Acids Res ; 49(18): 10573-10588, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34551436

RESUMO

The twister ribozyme is widely distributed over numerous organisms and is especially abundant in Schistosoma mansoni, but has no confirmed biological function. Of the 17 non-LTR retrotransposons known in S. mansoni, none have thus far been associated with ribozymes. Here we report the identification of novel twister variant (T-variant) ribozymes and their function in S. mansoni non-LTR retrotransposition. We show that T-variant ribozymes are located at the 5' end of Perere-3 non-LTR retrotransposons in the S. mansoni genome. T-variant ribozymes were demonstrated to be catalytically active in vitro. In reporter constructs, T-variants were shown to cleave in vivo, and cleavage of T-variants was sufficient for the translation of downstream reporter genes. Our analysis shows that the T-variants and Perere-3 are transcribed together. Target site duplications (TSDs); markers of target-primed reverse transcription (TPRT) and footmarks of retrotransposition, are located adjacent to the T-variant cleavage site and suggest that T-variant cleavage has taken place inS. mansoni. Sequence heterogeneity in the TSDs indicates that Perere-3 retrotransposition is not site-specific. The TSD sequences contribute to the 5' end of the terminal ribozyme helix (P1 stem). Based on these results we conclude that T-variants have a functional role in Perere-3 retrotransposition.


Assuntos
RNA Catalítico/química , Retroelementos , Schistosoma mansoni/genética , Animais , Sequência de Bases , Genoma Helmíntico , RNA Catalítico/metabolismo , Schistosoma mansoni/enzimologia
5.
FEBS J ; 288(5): 1586-1598, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32790122

RESUMO

Interactions between aminoglycoside antibiotics and the twister ribozyme were investigated in this study. An initial screen of 17 RNA-binding antibiotics showed that a number of aminoglycosides inhibit the ribozyme, while a subset of aminoglycosides enhances twister cleavage. Initial kinetic analysis of the twister ribozyme showed a sevenfold inhibition of ribozyme cleavage by paromomycin and a fivefold enhancement of cleavage by sisomicin. Direct binding between the twister ribozyme RNA and paromomycin or sisomicin was measured by microscale thermophoresis. Selective 2'-hydroxyl acylation analysed by primer extension shows that both paromomycin and sisomicin induce distinctive tertiary structure changes to the twister ribozyme. Published crystal structures and mechanistic analysis of the twister ribozyme have deduced a nucleobase-mediated general acid-base catalytic mechanism, in which a conserved guanine plays a key role. Here, we show that paromomycin binding induces a structural transition to the twister ribozyme such that a highly conserved guanine in the active site becomes displaced, leading to inhibition of cleavage. In contrast, sisomicin binding appears to change interactions between P3 and L2, inducing allosteric changes to the active site that enhance twister RNA cleavage. Therefore, we show that small-molecule binding can modulate twister ribozyme activity. These results suggest that aminoglycosides may be used as molecular tools to study this widely distributed ribozyme.


Assuntos
Antibacterianos/farmacologia , Paromomicina/farmacologia , RNA Catalítico/genética , Sisomicina/farmacologia , Animais , Pareamento de Bases , Sequência de Bases , Biocatálise , Domínio Catalítico , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Oligorribonucleotídeos/genética , Oligorribonucleotídeos/metabolismo , RNA Catalítico/agonistas , RNA Catalítico/antagonistas & inibidores , RNA Catalítico/metabolismo , Vespas/química , Vespas/metabolismo
6.
Virulence ; 11(1): 1432-1442, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33103573

RESUMO

The proliferation of antibiotic resistance has its origins in horizontal gene transfer. The class 1 integrons mediate gene transfer by assimilating antibiotic-resistance genes through site-specific recombination. For the class 1 integrons the first assimilated gene normally encodes an aminoglycoside antibiotic resistance protein which is either an aminoglycoside acetyltransferase (AAC), nucleotidyltransferase - (ANT), or adenyl transferase (AAD). An aminoglycoside-sensing riboswitch RNA in the leader RNA of AAC/AAD that controls the expression of aminoglycoside resistance genes has been previously described. Here we explore the relationship between the recombinant products of integron recombination and a series of candidate riboswitch RNAs in the 5' UTR of aad (aminoglycoside adenyltransferases) genes. The RNA sequences from the 5' UTR of the aad genes from pathogenic strains that are the products of site-specific DNA recombination by class 1 integrons were investigated. Reporter assays, MicroScale Thermophoresis (MST) and covariance analysis revealed that a functional aminoglycoside-sensing riboswitch was selected at the DNA level through integron-mediated site-specific recombination. This study explains the close association between integron recombination and the aminoglycoside-sensing riboswitch RNA.


Assuntos
Acetiltransferases/genética , Aminoglicosídeos/genética , Resistência Microbiana a Medicamentos/genética , Integrons/genética , Riboswitch , Aminoglicosídeos/metabolismo , Sequência de Bases , DNA Bacteriano/genética , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/patogenicidade , Recombinação Genética
7.
RNA ; 26(2): 137-149, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31826924

RESUMO

The 5' untranslated regions (5' UTR) of mRNAs play an important role in the eukaryotic translation initiation process. Additional levels of translational regulation may be mediated through interactions between structured mRNAs that can adopt interchangeable secondary or tertiary structures and the regulatory protein/RNA factors or components of the translational apparatus. Here we report a regulatory function of the 5' UTR mRNA of the spe2 gene (SAM decarboxylase) in polyamine metabolism of the fission yeast Schizosaccharomyces pombe Reporter assays, biochemical experiments, and mutational analysis demonstrate that this 5' UTR mRNA of spe2 can bind to spermidine to regulate translation. A tertiary structure transition in the 5' UTR RNA upon spermidine binding is essential for translation regulation. This study provides biochemical evidence for spermidine binding to regulate translation of the spe2 gene through interactions with the 5' UTR mRNA. The identification of such a regulatory RNA that is directly associated with an essential eukaryotic metabolic process suggests that other ligand-binding RNAs may also contribute to eukaryotic gene regulation.


Assuntos
Regiões 5' não Traduzidas , Adenosilmetionina Descarboxilase/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , Schizosaccharomyces/genética , Espermidina/metabolismo , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ligantes , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Schizosaccharomyces/metabolismo
8.
RNA ; 26(2): 150-161, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31767786

RESUMO

The 5' untranslated region (5' UTR) of eukaryotic mRNA plays an important role in translation. Here we report the function of the 5' UTR mRNA of S-adenosylmethionine synthetase (sam1) in translational modulation in the presence of SAM in fission yeast Schizosaccharomyces pombe Reporter assays, binding and chemical probing experiments, and mutational analysis show that the 5' UTR mRNA of sam1 binds to SAM to effect translation. Translational modulation is dependent on a tertiary structure transition in the RNA upon SAM binding. The characterization of such an RNA that is directly associated with an essential metabolic process in eukaryotes provides additional evidence that ligand binding by RNAs plays an important role in eukaryotic gene regulation.


Assuntos
Regiões 5' não Traduzidas , Metionina Adenosiltransferase/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Mensageiro/metabolismo , S-Adenosilmetionina/metabolismo , Schizosaccharomyces/genética , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Genes Reporter , Ligantes , RNA Fúngico/genética , RNA Fúngico/metabolismo , RNA Mensageiro/genética , Schizosaccharomyces/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-30936094

RESUMO

Class 1 integrons accumulate antibiotic resistance genes by site-specific recombination at aatI-1 sites. Captured genes are transcribed from a promoter located within the integron; for class 1 integrons, the first gene to be transcribed and translated normally encodes an aminoglycoside antibiotic resistance protein (either an acetyltransferase [AAC] or adenyltransferase [AAD]). The leader RNA from the Pseudomonas fluorescens class 1 integron contains an aminoglycoside-sensing riboswitch RNA that controls the expression of the downstream aminoglycoside resistance gene. Here, we explore the relationship between integron-dependent DNA recombination and potential aminoglycoside-sensing riboswitch products of recombination derived from a series of aminoglycoside-resistant clinical strains. Sequence analysis of the clinical strains identified a series of sequence variants that were associated with class I integron-derived aminoglycoside-resistant (both aac and aad) recombinants. For the aac recombinants, representative sequences showed up to 6-fold aminoglycoside-dependent regulation of reporter gene expression. Microscale thermophoresis (MST) confirmed RNA binding. Covariance analysis generated a secondary-structure model for the RNA that is an independent verification of previous models that were derived from mutagenesis and chemical probing data and that was similar to that of the P. fluorescens riboswitch RNA. The aminoglycosides were among the first antibiotics to be used clinically, and the data suggest that in an aminoglycoside-rich environment, functional riboswitch recombinants were selected during integron-mediated recombination to regulate aminoglycoside resistance. The incorporation of a functional aminoglycoside-sensing riboswitch by integron recombination confers a selective advantage for the expression of resistance genes of diverse origins.


Assuntos
Acetiltransferases/genética , Aminoglicosídeos/genética , Expressão Gênica/genética , Integrons/genética , Riboswitch/genética , DNA Bacteriano/genética , Pseudomonas fluorescens/genética , RNA Bacteriano/genética
10.
RNA ; 23(4): 483-492, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28115596

RESUMO

Structured RNAs have a central role in cellular function. The capability of structured RNAs to adopt fixed architectural structures or undergo dynamic conformational changes contributes to their diverse role in the regulation of gene expression. Although numerous biophysical and biochemical tools have been developed to study structured RNAs, there is a continuing need for the development of new methods for the investigation of RNA structures, especially methods that allow RNA structure to be studied in solution close to its native cellular conditions. Here we use osmium tetroxide (OsO4) as a chemical probe of RNA structure. In this method, we have used fluorescence-based sequencing technologies to detect OsO4 modified RNA. We characterized the requirements for OsO4 modification of RNA by investigating three known structured RNAs: the M-box, glycine riboswitch RNAs, and tRNAasp Our results show that OsO4 predominantly modifies RNA at uracils that are conformationally exposed on the surface of the RNA. We also show that changes in OsO4 reactivity at flexible positions in the RNA correlate with ligand-driven conformational changes in the RNA structure. Osmium tetroxide modification of RNA will provide insights into the structural features of RNAs that are relevant to their underlying biological functions.


Assuntos
Sondas Moleculares/química , Tetróxido de Ósmio/química , RNA de Transferência de Ácido Aspártico/química , Riboswitch/genética , Sequência de Bases , Conformação de Ácido Nucleico , RNA de Transferência de Ácido Aspártico/genética , Coloração e Rotulagem/métodos , Uracila/química
11.
PLoS One ; 10(4): e0122972, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25910005

RESUMO

BACKGROUND: The proliferation of antibiotic resistant pathogens is an increasing threat to the general public. Resistance may be conferred by a number of mechanisms including covalent or mutational modification of the antibiotic binding site, covalent modification of the drug, or the over-expression of efflux pumps. The nosiheptide resistance methyltransferase (NHR) confers resistance to the thiazole antibiotic nosiheptide in the nosiheptide producer organism Streptomyces actuosus through 2'O-methylation of 23S rRNA at the nucleotide A1067. Although the crystal structures of NHR and the closely related thiostrepton-resistance methyltransferase (TSR) in complex with the cofactor S-Adenosyl-L-methionine (SAM) are available, the principles behind NHR substrate recognition and catalysis remain unclear. METHODOLOGY/PRINCIPAL FINDINGS: We have analyzed the binding interactions between NHR and model 58 and 29 nucleotide substrate RNAs by gel electrophoresis mobility shift assays (EMSA) and fluorescence anisotropy. We show that the enzyme binds to RNA as a dimer. By constructing a hetero-dimer complex composed of one wild-type subunit and one inactive mutant NHR-R135A subunit, we show that only one functional subunit of the NHR homodimer is required for its enzymatic activity. Mutational analysis suggests that the interactions between neighbouring bases (G1068 and U1066) and A1067 have an important role in methyltransfer activity, such that the substitution of a deoxy sugar spacer (5') to the target nucleotide achieved near wild-type levels of methylation. A series of atomic substitutions at specific positions on the substrate adenine show that local base-base interactions between neighbouring bases are important for methylation. CONCLUSION/SIGNIFICANCE: Taken together these data suggest that local base-base interactions play an important role in aligning the substrate 2' hydroxyl group of A1067 for methyl group transfer. Methylation of nucleic acids is playing an increasingly important role in fundamental biological processes and we anticipate that the approach outlined in this manuscript may be useful for investigating other classes of nucleic acid methyltransferases.


Assuntos
Antibacterianos/química , Metiltransferases/química , RNA/química , Antibacterianos/farmacologia , Sítios de Ligação , Farmacorresistência Bacteriana , Ativação Enzimática , Metilação , Metiltransferases/metabolismo , Mutação , Conformação de Ácido Nucleico , Ligação Proteica , Multimerização Proteica , RNA/genética , RNA/metabolismo , Especificidade por Substrato , Tiazóis/química , Tiazóis/farmacologia
12.
Biochim Biophys Acta ; 1839(10): 951-8, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24631585

RESUMO

The emergence of antibiotic resistance in human pathogens is an increasing threat to public health. The fundamental mechanisms that control the high levels of expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are one of the earliest classes of antibiotics that were introduced in the 1940s. In the clinic aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug although resistance through enzymatic modification of the target rRNA through methylation or the overexpression of efflux pumps is also appearing. An aminoglycoside sensing riboswitch has been identified that controls expression of the aminoglycoside resistance genes that encode the aminoglycoside acetyltransferase (AAC) and aminoglycoside nucleotidyltransferase (ANT) (adenyltransferase (AAD)) enzymes. AAC and ANT cause resistance to aminoglycoside antibiotics through modification of the drugs. Expression of the AAC and ANT resistance genes is regulated by aminoglycoside binding to the 5' leader RNA of the aac/aad genes. The aminoglycoside sensing RNA is also associated with the integron cassette system that captures antibiotic resistance genes. Specific aminoglycoside binding to the leader RNA induces a structural transition in the leader RNA, and consequently induction of resistance protein expression. Reporter gene expression, direct measurements of drug RNA binding, chemical probing and UV cross-linking combined with mutational analysis demonstrated that the leader RNA functioned as an aminoglycoside sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycoside antibiotic resistance. This article is part of a Special Issue entitled: Riboswitches.

13.
RNA Biol ; 10(8): 1266-73, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23880830

RESUMO

The acquisition of antibiotic resistance by human pathogens poses a significant threat to public health. The mechanisms that control the proliferation and expression of antibiotic resistance genes are not yet completely understood. The aminoglycosides are a historically important class of antibiotics that were introduced in the 1940s. Aminoglycoside resistance is conferred most commonly through enzymatic modification of the drug or enzymatic modification of the target rRNA through methylation or through the overexpression of efflux pumps. In our recent paper, we reported that expression of the aminoglycoside resistance genes encoding the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes was controlled by an aminoglycoside-sensing riboswitch RNA. This riboswitch is embedded in the leader RNA of the aac/aad genes and is associated with the integron cassette system. The leader RNA can sense and bind specific aminoglycosides such that the binding causes a structural transition in the leader RNA, which leads to the induction of aminoglycoside antibiotic resistance. Specific aminoglycosides induce reporter gene expression mediated by the leader RNA. Aminoglycoside RNA binding was measured directly and, aminoglycoside-induced changes in RNA structure monitored by chemical probing. UV cross-linking and mutational analysis identified potential aminoglycoside binding sites on the RNA.


Assuntos
Regiões 5' não Traduzidas/fisiologia , Acetiltransferases/metabolismo , Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Nucleotidiltransferases/metabolismo , Riboswitch/fisiologia , Aminoglicosídeos/metabolismo , Antibacterianos/metabolismo , Sequência de Bases , Sítios de Ligação , Integrons , Modelos Moleculares , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Pseudomonas fluorescens/genética , Pseudomonas fluorescens/metabolismo , RNA Bacteriano/química , RNA Bacteriano/metabolismo , Riboswitch/genética
15.
Cell ; 152(1-2): 68-81, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332747

RESUMO

The majority of riboswitches are regulatory RNAs that regulate gene expression by binding small-molecule metabolites. Here we report the discovery of an aminoglycoside-binding riboswitch that is widely distributed among antibiotic-resistant bacterial pathogens. This riboswitch is present in the leader RNA of the resistance genes that encode the aminoglycoside acetyl transferase (AAC) and aminoglycoside adenyl transferase (AAD) enzymes that confer resistance to aminoglycoside antibiotics through modification of the drugs. We show that expression of the AAC and AAD resistance genes is regulated by aminoglycoside binding to a secondary structure in their 5' leader RNA. Reporter gene expression, direct measurements of drug RNA binding, chemical probing, and UV crosslinking combined with mutational analysis demonstrate that the leader RNA functions as an aminoglycoside-sensing riboswitch in which drug binding to the leader RNA leads to the induction of aminoglycosides antibiotic resistance.


Assuntos
Aminoglicosídeos/farmacologia , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , RNA Bacteriano/metabolismo , Riboswitch , Regiões 5' não Traduzidas , Acetiltransferases/genética , Acinetobacter baumannii/genética , Sequência de Bases , Escherichia coli , Metiltransferases/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Nucleotidiltransferases/genética , RNA Bacteriano/química , RNA Bacteriano/genética
16.
Genes Cells ; 17(2): 122-31, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23035257

RESUMO

Mtf1 has been characterized as a mitochondrial transcription factor and is shown to regulat mitochondrial transcription. Mtf1 has an additional function as a transcription factor for the nuclear gene srk1 in fission yeast. Hsp60 has been linked to a variety of important cellular functions such as apoptosis and the immune response. It functions mainly as a molecular chaperone that assists correct protein folding in the mitochondrion. Epolactaene tertiary butyl ester(ETB) is an inhibitor of human Hsp60 that can inhibit Hsp60 chaperone activity. In this study,we report that in fission yeast, Mtf1 binds to Hsp60 in vivo and in vitro, ETB inhibits the binding of Mtf1 and Hsp60, and inhibits mitochondrial transcription but not nuclear transcription of srk1. We propose that Hsp60 may act as a molecular chaperone that folds mitochondrial Mtf1 into a functional form and that ETB inhibits this Hsp60 chaperone activity by disrupting Mtf1 binding to Hsp60 and thus inhibits mitochondrial transcription in fission yeast.


Assuntos
Chaperonina 60/antagonistas & inibidores , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Fatores de Transcrição/metabolismo , Chaperonina 60/metabolismo , Ligação Proteica/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
17.
PLoS One ; 6(12): e28275, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22164259

RESUMO

BACKGROUND: Hydrogen sulfide (H(2)S) is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H(2)S activity is not completely understood, it is known to be involved in a number of cellular processes; H(2)S can affect ion channels, transcription factors and protein kinases in mammals. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H(2)S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H(2)S. Through the functional classification of genes whose expression profile changed in response to H(2)S, we found that H(2)S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H(2)S and the stress response. We identified that the target genes of the MAPK pathway respond to H(2)S; we also identified that a number of transporters respond to H(2)S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H(2)S treatment and that H(2)S can reduce mitochondrial oxygen consumption. CONCLUSION/SIGNIFICANCE: This study identifies potential molecular targets of the signaling molecule H(2)S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H(2)S in human diseases.


Assuntos
Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Sulfeto de Hidrogênio/farmacologia , Schizosaccharomyces/fisiologia , Transcrição Gênica , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Mitocôndrias/metabolismo , Modelos Biológicos , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Consumo de Oxigênio , Proteínas Quinases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Proteínas de Schizosaccharomyces pombe/genética
18.
Nucleic Acids Res ; 39(12): 5119-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21357609

RESUMO

We have characterized the mitochondrial transcription factor (Mtf1) and RNA polymerase (Rpo41) of Schizosaccharomyces pombe. Deletion mutants show Mtf1 or Rpo41 to be essential for cell growth, cell morphology and mitochondrial membrane potential. Overexpression of Mtf1 and Rpo41 can induce mitochondrial transcription. Mtf1 and Rpo41 can bind and transcribe mitochondrial promoters in vitro and the initiating nucleotides were the same in vivo and in vitro. Mtf1 is required for efficient transcription. We discuss the functional differences between Mtf1 and Rpo41 of S. pombe with Saccharomyces cerevisiae and higher organisms. In contrast to S. cerevisiae, the established model for mitochondrial transcription, S. pombe, a petite-negative yeast, resembles higher organisms that cannot tolerate the loss of mitochondrial function. The S. pombe and human mitochondrial genomes are similar in size and much smaller than that of S. cerevisiae. This is an important first step in the development of S. pombe as an alternative and complementary model system for molecular genetic and biochemical studies of mitochondrial transcription and mitochondrial-nuclear interactions. This is the first systematic study of the cellular function and biochemistry of Rpo41 and Mtf1 in S. pombe.


Assuntos
RNA Polimerases Dirigidas por DNA/fisiologia , Genes Mitocondriais , Proteínas Mitocondriais/fisiologia , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/genética , Fatores de Transcrição/fisiologia , Sequência de Aminoácidos , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , Deleção de Genes , Mitocôndrias/enzimologia , Mitocôndrias/genética , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Schizosaccharomyces/crescimento & desenvolvimento , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
19.
Nucleic Acids Res ; 39(7): 2690-700, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21138961

RESUMO

In eukaryotic cells, Mtf1 and its homologues function as mitochondrial transcription factors for the mitochondrial RNA polymerase in the mitochondrion. Here we show that in fission yeast Mtf1 exerts a non-mitochondrial function as a nuclear factor that regulates transcription of srk1, which is a kinase involved in the stress response and cell cycle progression. We first found Mtf1 expression in the nucleus. A ChIP-chip approach identified srk1 as a putative Mtf1 target gene. Over expression of Mtf1 induced transcription of the srk1 gene and Mtf1 deletion led to a reduction in transcription of the srk1 gene in vivo. Mtf1 overexpression causes cell elongation in a srk1 dependent manner. Mtf1 overexpression can cause cytoplasmic accumulation of Cdc25. We also provide biochemical evidence that Mtf1 binds to the upstream sequence of srk1. This is the first evidence that a mitochondrial transcription factor Mtf1 can regulate a nuclear gene. Mtf1 may also have a role in cell cycle progression.


Assuntos
Núcleo Celular/genética , Proteínas de Ligação a DNA/fisiologia , Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/fisiologia , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/fisiologia , Fatores de Transcrição/fisiologia , Transcrição Gênica , Núcleo Celular/química , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/metabolismo , Proteínas Mitocondriais/análise , Proteínas Mitocondriais/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/análise , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismo , Fosfatases cdc25/metabolismo
20.
Biochemistry ; 49(30): 6440-50, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20550164

RESUMO

Nosiheptide-resistance methyltransferase (NHR) of Streptomyces actuosus is a class IV methyltransferase of the SpoU family and methylates 23S rRNA at nucleotide adenosine corresponding to A1067 in Escherichia coli. Such methylation is essential for resistance against nosiheptide, a sulfur peptide antibiotic, which is produced by the nosiheptide-producing strain, S. actuosus. Here, we report the crystal structures of NHR and NHR in complex with SAM (S-adenosyl-l-methionine) at 2.0 and 2.1 A resolution, respectively. NHR forms a functional homodimer, and dimerization is required for methyltransferase activity. The monomeric NHR is comprised of the N-terminal RNA binding domain (NTD) and the C-terminal catalytic domain (CTD). Overall, the structure of NHR suggests that the methyltransferase activity is achieved by "reading" the RNA substrate with NTD and "adding" methyl group using CTD. Comprehensive mutagenesis and methyltransferase activity assays reveal critical regions for SAM binding in CTD and loops (L1 and L3) essential for RNA recognition in NTD. Finally, the catalytic mechanism and structural model that NHR recognizes 23S rRNA is proposed based on the structural and biochemical analyses. Thus, our systematic structural studies reveal the substrate recognition and modification by the nosiheptide-resistance methyltransferase.


Assuntos
Farmacorresistência Bacteriana , Metiltransferases/química , Streptomyces/química , Sítios de Ligação , Catálise , Cristalografia por Raios X , Metilação , Metiltransferases/metabolismo , Multimerização Proteica , RNA/metabolismo , Especificidade por Substrato , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...